Problem Set IV: due Friday, March 16

- 1) Consider a fluid in hydrostatic equilibrium with a vertical entropy gradient $\partial S/\partial z$ < 0. Take $g = -g\hat{z}$.
- a) Starting from the basic equations, derive the growth rate of ideal Rayleigh-Bernard instability. You will find it helpful to relate the density perturbation $\tilde{\rho}/\rho_0$ to the temperature perturbation \tilde{T}/T_o by exploiting the fact that the instability develops slowly in comparison to the sound transit time across a cell. Relate your result to the Schwarzschild criterion discussed in class.
- b) Now, include thermal diffusivity (χ) and viscosity (ν) in your analysis. Calculate the critical temperature gradient for instability, assuming $\chi \sim \nu$. Discuss how this compares to the ideal limit. What happens if $\nu > \chi$?
- Now again, consider the system of Problem 2, now immersed in a uniform magnetic field $B = B_0 \hat{z}$.
- Assuming ideal dynamics, use the Energy Principle to analyze the stability of a convection cell of vertical wavelength k_z . Of course, $k_z L_p >> 1$, where L_p is a mean pressure scale length. What is the effect of the magnetic field? Can you estimate how the growth rate changes?
- Now, calculate the growth rate using the full MHD equations. You may assume $\nabla \cdot \underline{V} = 0$. What structure convection cell is optimal for vertical transport of heat when B_0 is strong? Explain why. What happens when $B_0 \rightarrow \infty$? Congratulations you have just derived a variant of the Taylor-Proudman theorem!

Consider a rotating fluid with mean $\underline{V} = r\Omega(r)\hat{\theta}$. Your task here is to analyze the stability of this system to interchanges of 'rings', i.e.

In all cases, assume $\nabla \cdot \nabla = 0$ and $k_{\theta} = 0$, so the interchange motions carry no angular momentum themselves and the cells sit in the r-z plane.

- a) At the level of a "back-of-an-envelope" calculation, calculate the change in energy resulting from the incompressible interchange of rings (1) and (2). Note that $E = L^2/2mr^2$ and that the angular momentum L of an interchanged ring is conserved, since $k_\theta = 0$. From this, what can you conclude about the profile of $\Omega(r)$ necessary for stability? Congratulations you have just derived the Rayleigh criterion!
- b) Now, calculate the interchange growth rate by a direct solution of the fluid equations. You may find it helpful to note that for rotating fluids in cylindrical geometry:

$$\frac{\partial V_r}{\partial t} + \underline{V} \cdot \underline{\nabla} V_r - \frac{V_\theta^2}{r} = \frac{-1}{\rho} \frac{\partial P}{\partial r},$$

$$\frac{\partial V_{\theta}}{\partial t} + \underline{V} \cdot \underline{\nabla} V_{\theta} + \frac{V_r V_{\theta}}{r} = \frac{-1}{\rho r} \frac{\partial P}{\partial \theta},$$

$$\frac{\partial V_Z}{\partial t} + \underline{V} \cdot \underline{\nabla} V_Z = \frac{-1}{\rho} \frac{\partial P}{\partial z}.$$

Show that you recover the result of part (a).

c) Compare and contrast this interchange instability to an incompressible Rayleigh-Taylor instability. Make a table showing the detailed correspondences.

- 4) Drift-Alfven Waves
 - a) Derive three coupled reduced fluid equations for ϕ , A_{\parallel} , n. You may assume $T_e >> T_i$ and electrons are isothermal. Include a strong $\underline{B}_0 = B_0 \hat{z}$ and $\langle n \rangle = \langle n(r) \rangle$.
 - b) Show that in the limit where A_{\parallel} is negligible, you recover the Hasegawa-Wakatani system. Calculate the dispersion relation for drift instability in this system. Discuss your result in the limit $k_{\parallel}^2 v_{Th}^2 / \omega v > 1$.
 - c) Calculate the quasi-linear particle flux related to part b), above.
 - d) Show that if \hat{n} and $d\langle n \rangle/dr$ are negligible, you recover reduced MHD. What waves are present in this system? Discuss and derive the dispersion relation.
 - e) Derive the dispersion relation for the full 3 equation system. Discuss how drift and shear-Alfven waves couple for $k_{\parallel}^2 v_{Th}^2 / \omega v > 1$.
- Consider magnetic buoyancy interchange instabilities as discussed in class. Assume entropy stratification is neutral, so $dS_0/dz = 0$. Take η small, but non-zero.
- a) Use quasilinear theory to calculate the vertical flux of magnetic intensity. Since, $\Gamma \sim -\partial_z \ln(\langle B \rangle/\rho)$, show that Γ may be written as

$$\Gamma = -D \frac{\partial \langle B \rangle}{\partial z} + V \langle B \rangle.$$

Calculate D, V. Interpret your result. For $\rho = \rho_0(z)$. What profile corresponds to the zero flux state?

b) What is the origin of the pinch velocity V? Explain its significance.

c) As a related example, consider evolution of the particle density according to

$$\partial n/\partial t + \nabla \cdot (n\underline{\mathbf{V}}) = 0$$
.

Take
$$n_0 = n_0(x)$$
, $\underline{B} = B_0(x)\hat{z}$ and $\underline{V} = -\nabla \phi x \hat{z}/B_0(x)$.

Show that density evolution can be related to the incompressible advection of the field n/B:

$$\partial n/\partial t + \underline{V}_{eff} \cdot \underline{\nabla}(n/B) = 0$$

where $\nabla \cdot \underline{\mathbf{V}}_{eff} = 0$.

Show that the mean field equation for $\langle n \rangle$ obeys:

$$\frac{\partial}{\partial t} \langle n \rangle = \frac{\partial}{\partial x} D \frac{\partial}{\partial x} \left(\frac{\langle n \rangle}{\langle B \rangle} \right)$$

where we took $\langle n/B \rangle \cong \langle n \rangle / \langle B \rangle$. Discuss the zero flux state here. What are its implications for the density profile?

Re-write the mean field equation as

$$\frac{\partial \langle n \rangle}{\partial t} = -\frac{\partial}{\partial x} \left[-D \frac{\partial \langle n \rangle}{\partial x} + V \langle n \rangle \right].$$

Relate D and V, here. Under what circumstances will V be inward, i.e. up the density gradient?

d) Relate the results of parts b.), c.) here. What is the lesson?

Congratulations! You have just developed the basics of TEP pinch theory!